Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Simulation of Failure Behavior under Impact Loading for Cylindrical Carbon Fiber Reinforced Polymer

YUSUKE SAWAMURA, YUTA YAMAZAKI, JUN KOYANAGI, SATORU YONEYAMA

Abstract


This study presents a prediction for the dynamic failure behavior of the carbon fiber reinforced polymer (CFRP) under impact loading. In the experiment, the split Hopkinson pressure bar (SHPB) test was conducted by using two types of cylindrical CFRP specimens. The commercial finite element analysis (FEA) software Abaqus was used for the analysis. In this study, we considered two types of failure mechanisms, a problem that mainly involves matrix-dominated failure and does not involve fiber breakage and a problem that involves fiber-dominated failure. To predict the matrix-dominated failure, we adopted multi-scale analysis, which is a method that can carry out analysis at different scales. We considered the damage initiation criterion based on continuum damage mechanics (CDM). This damage initiation criterion was based on the Christensen failure criterion. We simulated interfacial failure by using cohesive zone modeling (CZM), which considers failure conditions in mixed mode. In micro-scale analysis, a two-dimensional periodic unit cell (PUC) was used and we considered CDM and CZM. Macro-scale analysis was conducted in the same way as in the SHPB experiments. To predict the fiber-dominated failure, simulation was carried out using the Hashin damage theory. Parameters used in macro-scale analysis were obtained from micro-scale analysis. Macro-scale analysis is currently conducted.


DOI
10.12783/asc33/25948

Full Text:

PDF

Refbacks

  • There are currently no refbacks.