Open Access Open Access  Restricted Access Subscription or Fee Access

Cylindrical Guided Wave Approach for Damage Detection in Hollow Train Axles

A. ZIAJA, L. CHENG, R. RADECKI, P. PACKO, W. STASZEWSKI

Abstract


Guided-waves are among the most commonly used techniques for Structural Health Monitoring. However, due to the high thickness-to-wavelength ratio, ultrasonic waves propagating in thick-walled cylindrical structures, such as train bogie axles, exhibit very complex multimodal behavior, thus creating additional challenges to conventional damage detection approaches. As a continuation of our previous work on the guided wave propagation inside a thick-walled cylinder, a novel inspection method using guided wave phenomenon is proposed in this paper, aiming at applications for high-speed trains. The proposed method is based on the near-field mode enhancement phenomenon, which occurs at axle geometrical transitions. Crack-induced alterations to the near-field wave features are used as an indirect indication of the crack presence within specific section of the axle. The method is presented in combination with a modified pulse-echo approach to facilitate defect localization. In addition, to analyze wave propagation phenomena across the wall thickness and verify the feasibility of the method, an axisymmetric model of a hollow axle was developed within the Local Interaction Simulation Approach framework. A simplified model of a train axle was investigated for different damage scenarios involving various sizes and locations.

doi: 10.12783/SHM2015/256


Full Text:

PDF